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Abstract One of the biggest problems in modeling distantly related proteins is the quality of the tar-
get-template alignment.  This problem often results in low quality models that do not utilize all the
information available in the template structure.  The divergence of alignments at a low sequence iden-
tity level, which is a hindrance in most modeling attempts, is used here as a basis for a new technique
of Multiple Model Approach (MMA).  Alternative alignments prepared here using different mutation
matrices and gap penalties, combined with automated model building, are used to create a set of mod-
els that explore a range of possible conformations for the target protein.  Models are evaluated using
different techniques to identify the best model.  In the set of examples studied here, the correct target
structure is known, which allows the evaluation of various alignment and evaluation strategies.
For a randomly selected group of distantly homologous protein pairs representing all structural classes
and various fold types, it is shown that a threading score based on simplified statistical potentials of
mean force can identify the best models and, consequently, the most reliable alignment.  In cases where
the difference between target and template structures is significant, the threading score shows clearly
that all models are wrong, therefore disqualifying the template.

Keywords Comparative modeling, Distantly related proteins, Alignment ambiguity

Running title Multiple Model Approach

Correspondence to: A. Godzik

Introduction

Comparative modeling, the most reliable protein structure
prediction method in existence, is based on the remarkably
simple but far-reaching observation that proteins with simi-
lar sequences fold to similar structures [1]. To identify this
similarity, the well-developed tools of protein sequence

analysis are used. They yield a quantitative measure of se-
quence similarity (score) and a position-by-position equiva-
lence between the two proteins, i.e., the sequence alignment
[2]. Such an alignment could be used subsequently to build
a three-dimensional model. This paradigm forms the basis
of the very active comparative modeling field [3-9]. Build-
ing the three-dimensional model of a new protein when only
the sequence is known (we call this protein a prediction tar-
get) can be divided into three logical steps:

• identifying an appropriate protein template (a ho-
mologous protein whose structure has already been solved)



• calculating the alignment of the target sequence with
this template

• building the three dimensional model.
Comparative protein modeling is a method of very practi-

cal importance with many algorithms available as commer-
cial [10-12] packages or on Web sites [13]. Also, some com-
mercial programs are available for free for the academic com-
munity [14, 15].

The first stage of a modeling process is identifying a tem-
plate, for instance, by a standard sequence similarity search
in a database containing sequences of all proteins with known
three-dimensional structures. The step is often considered
trivial. Indeed, if a closely related template protein is present
in the database of known structures, any of the large number
of publicly available programs can be used to find it. How-
ever, if such template does not exist, problem becomes diffi-
cult. In recent years, a large effort was put into developing
algorithms that are able to recognize protein homologies and
structural similarities beyond the level of easily identifiable
homology [16-19]. A success of the fold prediction algorithms
greatly increased the range of application of the comparative
modeling technique but, at the same time, because the struc-
tural similarity between distant homologues is smaller, in-
creased the level of difficulty on the two subsequent steps.

In the next step, which is often merged with the template
recognition step, residues of the target sequence are assigned
to the residues of the template, i.e. the target-template align-
ment is prepared. In the third step, a model of the target pro-
tein is built on the scaffold of the template structure by side-
chain repacking and linking the fragments of aligned struc-
ture [9, 20]. This step is usually done with the use of special-
ized modeling software [10, 12, 21]. At this final stage, it is
usually impossible to correct errors that result from mistakes
made in the earlier steps [22]. Consequently, problems with
the alignment step remain the main reason for errors in the
comparative modeling and often result in comparative mod-
eling not taking full advantage of the extent of structural simi-
larity between the target and the template [23].

The inherent problems with the alignment preparation are
often unappreciated. This is probably because in most appli-
cations, only closely homologous proteins are being com-
pared where the alignment is unique and easy to find. In re-
cent years, there have been very few serious attempts to ad-
dress the problem of alignment quality and those have con-
centrated on the problem of optimal alignment parameters
[24] or identification of the reliable fragments of the align-
ment [25, 26]. Standard algorithms can efficiently calculate
the score of the best alignment between two proteins and
provide one alignment (from many) having this score. What
they don’t tell is how many different alignments have scores
identical to or very close to the optimal one, and how differ-
ent these alignments are. The information about suboptimal
alignments [27, 28] gives some hints about how unique the
alignment is. It could be used also to identify the regions of
both molecules where the similarity is strongest, which some-
times coincides with the most reliable fragments of the align-
ment [26]. Unfortunately, the information about the subopti-
mal alignments is not available from any of the popular

“canned” alignment programs, which may also contribute to
the lack of appreciation of the “alignment ambiguity prob-
lem”.

The alignment protocol based on the dynamic program-
ming algorithm [29, 30] requires two types of parameters: a
substitution matrix and the penalties for introducing gaps into
the alignment. The first group of parameters yields informa-
tion about the probability of one amino acid being replaced
by another via mutation. The derivation of mutation matri-
ces can rely on various information sources, such as struc-
tural equivalence of numerous protein sequences, genetic code
similarity, chemical similarity of amino acids, hydrophobicity
index, physical property indices, main chain folding angles,
contact potential and neighborhood selectivity [31]. Over forty
various mutation matrices have been derived by various groups
and most were recently collected, systematically analyzed
and made publicly available on the Internet [31]. The second
type of parameter is the gap introduction and extension pen-
alty [2], which have no clear physical interpretation and are
usually determined by trial and error.

The alignment methods and parameters can be tested for
protein pairs where both structures are known. For instance,
the structural alignment can be treated as the standard of truth
[24, 25] and various sequence alignment strategies can be
evaluated by their ability to reproduce it. Argos and coworkers
used this approach in a comprehensive test of different muta-
tion matrices and gap penalties [24]. They tested as many as
41 mutation matrices, optimizing the gap penalty parameters
for each matrix. It was shown that the quality of the align-
ment dramatically depends on the type of mutation matrix
and the values of the gap penalties used, which must be
optimized separately for each mutation matrix. Unfortunately,
as shown later in this paper, the distribution of alignment
accuracy for different alignment methods can be very large.
A method of alignment calculation, which is optimal in the
statistical sense, could actually produce very wrong align-
ments in a number of specific cases.

The alignment is usually trivial if the sequence identity of
the target and template is higher than 50% of identical amino
acids. With protein sequence identity ranging from 30 to 50%,
significant shifts between different alignments emerge in some
regions, mostly loops. When sequence identity drops below
30%, the alignments become very unstable, changing dra-
matically with scoring matrices and gap penalties [24]
and they become essentially random for structurally similar
proteins with undetectable sequence similarity [32-34]. It is
important to point out that the increasing alignment ambigu-
ity with decreasing sequence similarity is not a technical prob-
lem that could be overcome by improving alignment algo-
rithms. It reflects two partly independent problems, both of
which are related to the fundamental features of the sequence-
structure relationship in proteins. The first is that the extent
of sequence similarity decreases with increasing evolution-
ary distance between proteins, and at a certain point detect-
able sequence similarity is confined only to a small part of
both molecules. This problem could be addressed by chang-
ing the definition of sequence similarity and using some struc-
tural information in the scoring function, as it is done by
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case The alignments The models

target mutation z-score sequence contact Cα contact Cα threading 3D -ln(pdf)
template matrix identity map RMSD map RMSD energy profiles Modeller

overlap [a] [a] overlap [b] [b] [c] [d]

1. benner 74 + -7.1 16.3 54 3.07 63 2.87 -0.109 52.06 594
2hhdA blossum62 + -6.4 16.3 50 3.53 56 3.30 -0.053 43.73 605
2gdm gonnet + -7.4 16.3 54 3.07 63 2.87 -0.109 52.06 594

nwsgappep -4.9 17.0 49 4.16 57 3.93 -0.025 34.50 648
str + -6.7 17.0 49 4.16 57 3.93 -0.025 34.50 648

2. benner 74 + -4.4 27.4 33 6.66 50 5.93 -0.119 33.49 550
256bA blossum62 + -5.8 31.1 40 6.03 53 4.90 -0.219 34.21 551
1bbhA gonnet + -4.5 27.4 33 6.66 50 5.93 -0.119 33.49 551

nwsgappep -3.7 23.6 27 7.46 34 7.09 0.086 24.24 442
str + -5.1 29.2 35 6.54 51 5.48 -0.236 32.44 699

3. benner 74 + .0 27.6 29 8.17 30 8.92 0.002 23.28 759
1aaj blossum62 + -4.4 34.3 25 10.09 37 11.58 0.044 23.73 634
1paz gonnet + -.2 29.5 25 9.69 29 10.56 0.016 22.50 781

nwsgappep -6.7 27.6 30 8.13 32 9.16 0.034 24.57 803
str + -.8 30.5 31 8.58 37 9.53 -0.007 26.11 740

4. benner 74 + -5.4 25.3 48 5.93 57 5.62 -0.118 38.95 708
1plc blossum62 + -6.5 26.3 48 5.53 55 5.37 -0.129 39.57 704
1aaj gonnet + -5.5 24.2 54 5.43 58 4.68 -0.145 33.49 707

nwsgappep -8.4 20.2 49 4.33 50 5.65 -0.122 37.95 817
str + -4.2 18.2 22 12.96 24 13.63  0.047 40.60 782

5. benner 74 + -14.7 37.6 58 2.88 68 2.46 -0.144 84.73 2429
2sga blossum62 + -14.6 38.7 59 2.92 66 2.54 -0.144 87.53 2452
2lrpa gonnet + -14.9 38.1 58 3.02 66 2.49 -0.122 81.80 2410

nwsgappep -11.7 34.8 61 2.14 70 2.02 -0.121 87.47 1484
str + -16.9 37.0 65 1.98 73 1.73 -0.162 88.74 1628

6. benner 74 + -9.1 26.3 62 1.63 73 1.85 -0.216 22.98 365
1aboA blossum62 + -7.8 28.1 51 1.87 62 2.03 -0.167 19.23 381
1ckaA gonnet + -8.8 28.1 53 1.82 57 2.01 -0.185 17.83 359

nwsgappep -8.7 22.8 49 1.94 50 2.12 -0.180 14.91 264
str + -9.4 22.8 49 1.94 50 2.12 -0.180 14.91 264

7. benner 74 + -5.1 28.3 39 7.47 44 5.75 -0.085 49.03 1152
4fxn blossum62 + -7.4 31.2 34 7.39 38 6.40 -0.019 42.30 1592
1rcf gonnet + -5.2 28.3 39 7.47 44 5.75 -0.085 49.04 1152

nwsgappep -6.6 30.4 40 6.03 40 4.96 -0.050 50.33 1454
str + -6.9 29.0 39 5.68 45 5.40 0.003 39.74 1782

8. benner 74 + -14.5 28.6 70 1.91 74 1.91 -0.184 64.31 859
5dfr blossum62 + -12.9 29.9 64 2.47 71 2.35 -0.103 55.39 1032
3dfr gonnet + -13.7 28.6 70 1.91 74 1.91 -0.184 64.31 859

nwsgappep -14.0 28.6 61 2.21 68 2.23 -0.104 55.05 987
str + -14.6 31.2 57 2.63 64 2.59 -0.160 59.97 1285

Table 1 Alignment and model characteristics for test cases
of comparative modeling.  Values calculated using the cor-
rect target structure are highlighted. Such values require the

correct answer to be known and are used here only to evalu-
ate various modeling strategies
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Table 1 (continued)

case The alignments The models

target mutation z-score sequence contact Cα contact Cα threading 3D -ln(pdf)
template matrix identity map RMSD map RMSD energy profiles Modeller

overlap [a] [a] overlap [b] [b] [c] [d]

9. benner 74 + -1.5 19.5 16 10.14 17 9.96 0.146 13.48 659
1aba blossum62 + -2.0 28.7 34 6.62 39 6.39 -0.041 17.95 439
1kte gonnet + -1.6 23.0 15 9.97 13 9.65 0.156 12.31 596

nwsgappep -1.7 24.1 32 4.77 40 5.08 0.077 22.49 468
str + -1.9 13.8 15 9.60 12 9.51 0.015 11.49 606

10. benner 74 + -6.1 21.8 20 14.75 20 14.39 0.029 106.64 3372
1qorA blossum62 + -6.9 25.5 28 12.51 32 12.18 -0.010 90.33 4851
2ohxA gonnet + -6.1 22.4 20 14.80 21 14.39 0.036 103.71 3454

nwsgappep -5.3 20.2 18 15.30 20 15.68 0.020 103.42 4737
str + -5.5 19.3 18 14.96 19 14.64 0.075 90.80 3344

11. benner 74 + -18.5 34.4 55 3.88 56 4.48 -0.111 112.79 2634
1thm blossum62 + -21.5 36.9 53 4.34 59 4.37 -0.177 120.48 2655
2prk gonnet + -18.5 34.4 52 4.13 54 4.14 -0.133 114.13 2157

nwsgappep -22.1 33.7 50 3.93 50 4.49 -0.105 113.48 2830
str + -22.3 34.4 58 3.79 61 4.38 -0.148 124.39 2704

12. benner 74 + -12.4 22.9 40 4.26 50 4.78 -0.155 91.77 1945
2dri blossum62 + -11.0 24.4 41 4.38 51 4.25 -0.156 90.34 1771
8abp gonnet + -12.0 23.2 42 4.10 51 3.75 -0.098 81.25 1699

nwsgappep -9.4 22.5 40 5.29 50 5.01 -0.036 68.77 1763
str + -10.2 23.2 44 3.75 54 3.66 -0.168 99.89 1785

13. benner 74 + -7.3 26.4 44 6.16 48 5.44 -0.112 57.20 759
1acf blossum62 + -7.7 27.2 44 5.90 49 5.49 -0.070 57.82 779
1pne gonnet + -7.3 26.4 42 6.20 50 5.43 -0.119 58.26 834

nwsgappep -4.8 26.4 49 3.53 56 2.61 -0.186 53.83 771
str + -5.2 25.6 42 5.93 49 5.49 -0.130 53.61 616

14. benner 74 + -7.6 30.9 43 3.83 43 3.70 0.018 11.05 249
1fca blossum62 + -6.4 34.5 44 3.44 48 3.18 0.035 11.64 249
1fxd gonnet + -7.5 32.7 47 3.28 48 2.85 -0.104 14.27 253

nwsgappep -5.5 32.7 39 3.96 39 3.87 0.073 9.89 257
str + -7.3 32.7 39 3.96 39 3.87 0.073 9.89 257

15. benner 74 + -13.2 35.6 62 3.29 68 3.15 -0.261 47.68 689
9rnt blossum62 + -13.0 37.5 62 3.42 63 3.15 -0.244 42.76 590
1rtu gonnet + -13.4 35.6 61 3.30 67 3.17 -0.244 43.35 717

nwsgappep -10.7 35.6 56 3.66 56 3.65 -0.227 39.76 831
str + -11.7 36.5 59 3.30 64 3.15 -0.225 47.00 716

16. benner 74 + -1.9 20.0 26 4.42 28 3.99 -0.195 20.66 408
1bunB blossum62 + -1.6 25.0 27 4.36 26 4.04 -0.165 17.76 457
1tcp gonnet + -1.9 21.7 13 4.78 20 4.44 -0.148 13.89 533

nwsgappep -2.4 13.3 23 8.24 21 9.94 0.060 15.36 967
str + -1.9 20.0 16 4.52 15 4.65 0.005 17.33 472

[a]  Target and template structures are compared
[b]  Models are compared to their respective target structures

[c]  The highest value indicates the best model
[d]  The lowest value indicates the best model
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threading algorithms. Surprisingly, although such methods
are able to recognize many similarities that are impossible to
detect on the sequence level, so far it has not resulted in bet-
ter quality alignments. The second problem behind sequence
alignment ambiguities is that with increasing evolutionary
distance between proteins, even the structural alignments
become ambiguous [35, 36]. Position-by-position equivalence
between two protein structures may depend on how we de-
fine the similarity between them [36]; thus, in many cases,
sequence alignment may correctly represent reality by being
ambiguous.

In such cases, comparative modeling could still work prop-
erly because the structural similarity is sufficient. There are,
however, two problems to be solved: how to obtain the best
possible alignment without the benefit of using both struc-
tures to evaluate it and how to estimate the distance between
the model and (unknown) target structure. If the modeling
algorithm fails for any reason, we should at least know that
the resulting models are inaccurate.

A standard approach, suggested by modeling package
manuals, is to prepare the alignment using one of the well-
known substitution matrices and to assess the quality of the
single resulting model. It is suggested that the alignment
should be “corrected” if there is evidence that the model is of
low accuracy. In this contribution, we present a semi-auto-
matic extension of this approach, which could be implemented

using widely available software packages. As shown in the
paper, on several test cases, this approach gives consistently
good results.

To produce a high quality model of a target protein, which
would be as close to the real structure as the actual similarity
between template and target would allow, we propose the
Multiple Model Approach, consisting of the following steps:

1. Exploration of the alignment diversity by using vari-
ous alignment parameters.

2. Elimination of alignments incompatible with some
conserved features of target and template sequences (some
features might be known prior to target structure determina-
tion - active and binding sites, disulfide bridges, etc.).

3. Construction of full-atom models using all the remain-
ing alignments.

4. Selection of the best model using the value of the
threading energy as a criterion of model accuracy.

5. Assessment of the model accuracy using the value of
threading energy.

Results

A set of 16 protein pairs, presented in detail in the Methods
section, was chosen to represent weakly homologous pro-
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Figure 1a Plot of density of suboptimal alignments for pairs
of proteins with different level of sequence similarity.
Pseudoazurin from Alcaligenes faecalis (1paz)), pseudoazurin
from Achromobacter cycoclastes with 68% sequence identity

Figure 1b Plot of density of suboptimal alignments for pairs
of proteins with different level of sequence similarity.
Pseudoazurin from Alcaligenes faecalis (1paz) with
pseudoazurin from Methylobacterium extorquens (PDB code
1pmy) with 45% sequence identity
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teins of different structural classes. Several pairs represent
actual examples where published sequence alignments, pre-
pared before the structural determination of the target, were
wrong. For these proteins, the MMA approach, as presented
above, is applied and described in detail below. The results
and their analyses are presented in Table 1. Structures of all
proteins in this set are currently known; therefore, the results
shown are not genuine predictions but are presented merely
to illustrate the MMA procedure. To stress this point, in Ta-
ble 1, values obtained using the actual target structure are
printed on gray background. These values were used only
“outside” the actual MMA procedure to evaluate and discuss
its results.

The alignments

As mentioned in the Introduction, the alignment between two
proteins becomes increasingly unstable with the decreasing
sequence similarity between them. This could be illustrated
by looking at the plot of suboptimal alignments for protein
pairs with a different level of sequence similarity. Every align-
ment can be thought of as a position-by-position equivalence
between the two proteins. There are many possible align-
ments, and the one that is usually reported maximizes the
similarity score (or minimizes the distance) between two pro-
tein sequences [2]. Every alignment can be visualized as a
series of points on a plane, where a presence of the point (i,j)
means that this particular alignment included the equivalence
between position i from one sequence with position j in the

second. On a plane, we can present all possible alignments
between two proteins, using a third dimension to represent
their score. In plots shown in Figure 1, only alignments whose
scores differ from the optimal one by 10% or less are shown
and only the best score is displayed for every point. There-
fore, the single line denotes a unique alignment within the
top 10% of the top score. If the line gets wider, it means that
other alternative alignments with similar scores are present.
If large alignment variations are possible within small score
differences, this strongly suggests that the alignment is not
well defined in a given region. The most interesting situation
arises where the line splits into several parallel lines, mean-
ing that few non-overlapping alignments with similar scores
are possible.

For test pairs No. 3 (amicyanin (1aaj) vs. pseudoazurin from
Alcaligenes faecalis (1paz)), two other proteins, pseudoazurin
from Achromobacter cycoclastes with 68% sequence iden-
tity and pseudoazurin from Methylobacterium extorquens
(PDB code 1pmy) with 45% sequence identity to 1paz, were
chosen. Finally, amicyanin is compared with plastocyanin
from poplar leaves (1plc), the fourth pair from Table 1. The
density of suboptimal alignments is displayed for all four
pairs (see Fig.1). As can be seen in Figure 1, the picture
changes qualitatively between pairs with sequence similarity
above 30% and for pairs below that level. For closely related
proteins, the alignment is essentially unique, as represented
by a single black line on Figures 1a and 1b. With lower se-
quence similarity, large areas of ill-defined alignments ap-
pear (compare Figures 1a and 1b) and, finally, for the two

Figure 1c Plot of density of suboptimal alignments for pairs
of proteins with different level of sequence similarity.
Amicyanin (PDBcode 1aaj) aligned with pseudoazurin from
Alcaligenes faecalis (1paz) with 29% sequence identity
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Figure 1d Plot of density of suboptimal alignments for pairs
of proteins with different level of sequence similarity.
Amicyanin (PDBcode 1aaj) aligned with plastocyanin from
poplar leaves (PDB code 1plc) with 24% sequence identity
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most distant pairs, a number of alternative alignments are
present, seen as parallel lines on Figure 1c or 1d.

As mentioned in the Introduction, none of the widely avail-
able alignment packages allows one to explore the subopti-
mal alignments. Therefore, we explore the diversity of align-
ment using a different method. For a given target-template
pair, we align them using several mutation matrix-penalty
gap combinations, optimized independently to produce rea-
sonable alignments [24]. The connection between the width
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Figure 2 Four examples of the comparison of alignments
obtained with different mutation matrices in a dot-matrix rep-
resentations of alignments. Abbreviations for mutation ma-
trices are identified in the Methods section. Best alignments
are shown as continuous lines. Other alignments, where dif-
ferent from the best ones, are shown as dashed lines. The best
(first) and the worst (second) sequence alignments are shown
in detail, with an indication of the mutation matrices used.
Positions of secondary structure elements, defined by their
DSSP assignments, are shown below the sequence alignment
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of distribution of suboptimal alignments and the differences
between optimal alignments obtained with different scoring
matrices and gap penalties is not established. However, both
explore the same effect and both undergo the same qualita-
tive change at the same level of sequence similarity. For in-
stance, one can compare Figures 1d and 2b, which present a
picture of alignment diversity for the same protein pair of
amicyanin and plastocyanin. Alignment ambiguity at the N-
terminus and around position 60-70 is captured in the same
way in both methods.

For each test pair, several different alignments were ob-
tained (see Fig. 2 and Table 1) following the procedure de-
scribed in the Methods section. The differences between the
alignments were quite large even for the test pairs where se-
quence identity is above 30%. We can quantify these differ-
ences using structural information about both proteins, which
is not a part of the MMA procedure since it requires knowl-
edge of the target structure. The percent of conserved inter-
residue contacts can change by a factor of 2, depending on
the alignment procedure used. The differences in alignments
are not limited to outside loops, but also extend to the core
regions (see Fig. 2). The global measure of structural simi-
larity, Cα RMSD (root mean square deviation) [37, 38], also
can show a large variation for a single test pair from accept-
able values of 2-4 Å to a practically meaningless 7-15 Å. The
Ca RMSD can be calculated for alignments, comparing
equivalenced residues from target and template structure, and
for final models, comparing model and target structures. Both
values are reported in Table 1.

In several cases, there is a difference in sensitivity be-
tween the two measures of alignment accuracy: contact map
overlap and Ca RMSD. The value of Ca RMSD changes much
more rapidly with distance from the optimal alignment. This
reflects the fact that this measure of model quality is more
global - it is very sensitive to regions of weak structural simi-
larity and changes of relative positions of otherwise similar
protein segments.

Unfortunately, in a real life situation where the target struc-
ture is not known, we are not able to distinguish between
different alignments. Each of the mutation matrices used here
performs very well on a large set of protein pairs [24]. At the
same time, for the set studied here, each matrix in at least
one case produces the worst alignment (and in at least one
case the best). The benner74 matrix performs best in the larg-
est number of cases, but overall has only 40% correct hits. It
is often observed that for a given test pair, one of the muta-
tion matrices works much worse than the other, demonstrat-
ing that reliance on one alignment protocol is dangerous.

It is noteworthy that the z-score measuring significance
of a given alignment in terms of its matrix score, as described
in the Methods section, does not distinguish correct from in-
correct alignments. In some cases, alignments with the best
z-scores are actually the worst from the structural point of
view. Another interesting observation arising from this study
is the fact that sequence identity is a very poorly defined
quantity for protein pairs of low homology. As can be seen in
Table 2, different mutation matrices can yield sequence iden-
tity values differing more than 10% (in absolute values).

The differences between alignments can be of various
scopes and consequences. In some cases, differences are mi-
nor, involving mostly shifts in loop regions and on edges of
secondary structure elements. For some cases, e.g., 5dfr/3dfr
alignment (see Fig. 2A), small gaps are also observed in one
of the helices and one of the β-strands. These apparently mi-
nor shifts in alignment can result in substantial deviations in
models. It is widely accepted that gaps in alignments should
be placed mostly in loops outside the continuous secondary
structure elements. Nevertheless, in several cases a more cor-
rect model is obtained if the alignment procedure introduces
a gap in one of the secondary structure elements. It happens,
for instance, with the 256bA/1bbhA pair (see Fig. 2D) where
an alignment with a large gap in the middle of the N-termi-
nal helix results in a much better model than an alignment
with no big gaps in the central parts of the helices. The re-
sulting models have 5.48 and 7.1 Å RMSD, respectively, rela-
tive to the target structure. A similar case is the 1bunB/1tcp
pair (see Fig. 2C), where the better alignment has a gap in
the middle of a β-strand. What is even more puzzling, the
best model for this protein was obtained when an α-helix
was partially matched to a β-strand. In this case, better align-
ment can be easily selected based on matching 6 cysteine
residues that form 3 disulfide bridges present in the template
and target proteins. The alignments obtained using benner74
and nwsgappep mutation matrices correctly match 5 and 2
cysteine residues, respectively.

In other cases, alignments differ in a more significant way.
For example, in the 1plc/1aaj case, (see Fig. 2B) one of the
alignment methods does not recognize that an N-terminal
segment in 1aaj does not have a corresponding segment in
1plc. This results in a shift of one β-strand in the alignment
and the RMSD between model and target structure rises from
4.7 Å (for the better alignment) to a meaningless 13.7 Å for
the worst alignment.

The models

As discussed in the previous paragraph, for all 16 cases, align-
ments prepared with different mutation matrices show sig-
nificant divergence and, using only information contained in
the sequence we are not able to recognize the best align-
ments. Therefore, in this section, models built based on vari-

Table 2 The performance of different threading energy terms
in distinguishing the best model

threading number of correct models
energy term distinguished using only this term

local energy 7
burial energy 5
contact energy 5
sum of all terms 11
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ous alignments will be analyzed. We want to stress that all
scores discussed here were calculated without reference to
the target structure; therefore, they could also be calculated
for bona fide predictions.

As seen in Table 2, threading approaches do a very good
job at recognizing the best model. In 11 of 16 test cases, the
models yielding the lowest value of threading energy were
closest to the native target structure (see Table 2). In 9 cases,
the models judged to be worst by this criterion are those that
differ most from the native structure. The identification of
the more accurate models is much better in cases when at
least one model is close to the native structure. It can be
easily rationalized, since small differences between very
wrong models are probably meaningless. In other words, a 2
Å difference between a 2.5 Å and 4.5 Å model is important,
but the same difference between a 9 Å and 11 Å model is
probably not. The threading energy calculated with the to-
pology fingerprint threading algorithm [39] gives very simi-
lar results to the 3D profiles score [40]. Both methods choose
the best alignment in the same number of cases and, in one
case, they are both wrong in the same way. However, in the
cases where the 3D profiles are wrong, they are often com-
pletely wrong, picking the worst model such as in the case of
1plc/1aaj where a nonsensical 13.61 Å RMSD alignment is

chosen over a 4.7 Å one. The value of an alignment z-score
selects the best model in only 5 cases. An internal measure of
model quality supplied by the MODELLER program [41] is
able to distinguish the best model in 4 cases only. It is not
surprising though, since this function does not describe the
physical quality of the model, only the degree of satisfaction
of the imposed restraints. These numbers can be compared to
the random choice of models, which should give 3 correct
hits.

The cases where the threading score did not pick up the
model closest to the native structure are special because the
target and template structures have relatively little similar-
ity. In one of 5 such cases (1aaj/1paz), only the central parts
of the sequences have a common fold. The N-terminal part
of the target has no corresponding fragment in the template
structure, which results in an unacceptable Cα RMSD above
8 Å. This value simply tells us that the template chosen is
inappropriate for modeling the given target. This is in agree-
ment with the high values of the threading score for all the
models for this target/template pair. In the other four cases
(256bA/1bbhA, 4fxn/1rcf, 1aba/1kte and 1thm/2prk ), the
deviation of best models from the native structure is in the
range 4-6 Å. It should be noted that in three of those four
cases the models picked up by the criterion of a threading

Figure 3a Ribbon diagrams
of target and template struc-
tures compared with two
model structures, the best one
and the worst one. Abbrevia-
tions for mutation matrices
are identified in the Methods
section. 1plc vs. 1aaj. Posi-
tions of secondary structure
elements are calculated using
the target structure, not the
model structures

1plc

Figure 3A: The structures of 1plc and 1aaj and the

1plc (model str+)

1aaj

best and the worst model of 1plc.

1plc (model gonnet+)
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score have the second lowest deviations from the native struc-
ture.

Figs. 2B, 2D, 3A and 3B illustrate the influence of the
alignment and the template structure on the model. In the
case of the 1plc/1aaj pair, the N-terminal part of the align-
ment is unstable (Fig. 2B). Consequently, a very inaccurate
model is obtained using the str+ mutation matrix. However,
even in the best alignment (calculated using gonnet+ muta-
tion matrix), the N-terminal β-strand of 1plc is incorrectly
assigned to a coil segment in the 1aaj structure despite the
existence of a corresponding strand. Therefore, the N-termi-
nal fragment of this model has a wrong backbone direction
(see Fig. 3A). This confirms the known fact that significant
errors occurring at the stage of alignment calculation cannot
be corrected at the stage of model building. The most prob-
able reason of alignment instability in this case is that the N-
terminal part of the template structure has no corresponding
part in the target. Thus, the N-terminal fragments of the tar-
get sequence have many possible places to be assigned to in
the “dangling” N-terminal fragment of the 1aaj structure.

The case of the 256bA/1bbhA pair is an example of erro-
neous matching of secondary structure elements. As can be
easily observed (see Figs. 2D and 3B), the gaps introduced in
the secondary structure elements of the target are less harm-

ful for the model than the assignment of the target’s helices
to coil regions of the template structure. In this case, the model
selected by the criterion of the lowest value of threading score
criterion is not the most accurate one. However, the selected
model and corresponding alignment are still much more ac-
curate than the worst one (see Fig. 3B).

Another interesting case is the 1qorA/2ohxA pair (se-
quence identity in the range 19-25%), where the target and
template sequences are longer than 300 residues. Various
alignment parameters produce a series of models with Cα
RMSD in the range 12-15 Å and a threading score in the
range of -0.1 to +0.08, which indicates that all models are of
very low accuracy. However, local similarity of the native
structure and the models is much higher - up to 32% of con-
served interresidue contacts for the best model. It is obvious
that for larger protein structures, the discrepancy between
the local and global measure of structural similarity is higher.
In this case, the most accurate model has the best threading
score.

Based on the present results (see Table 1), the following
rule of thumb can be formulated. If the threading score-per-
residue is below -0.1, one can be confident that the method
chooses the best model and the model is correct. Values of -
0.1-0.0 correspond to models that should be used with cau-

Figure 3b Ribbon diagrams
of target and template struc-
tures compared with two
model structures, the best one
and the worst one. Abbrevia-
tions for mutation matrices
are identified in the Methods
section. 256b vs. 1bbh. Posi-
tions of secondary structure
elements are calculated using
the target structure, not the
model structures

1bbhA

256bA (model str+)

Figure 3B: The structures of 256bA and 1bbhA and two

256bA (model nwsgappep)

models of 256bA.

256bA
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tion, carefully analyzed and perhaps rebuilt while variations
in alignments should be explored (i.e., different gap param-
eters). Values above 0.0 indicate templates inadequate for
given target structures. In the latter case, all the models can
be regarded as being incorrect.

An analysis of energy of the models

The terms of the threading energy of the models were calcu-
lated separately and analyzed to answer the following ques-
tion. Are all energy terms equally important for distinguish-
ing the best model?

As illustrated in Table 2, all energy terms take part in se-
lecting the best model. The sum of all energy terms works
much better than each energy term alone. In two cases, no
single energy term was able to distinguish the best model,
but the sum of all energy terms indicates which one is the
closest to the native structure.

These data exclude the possibility that distinguishing be-
tween models of different quality is only the result of strain
in the protein backbone caused by an incorrect alignment
between the target sequence and the template. This strain is
probably the most important and easily detectable result of
incorrect alignment as indicated by the number of correctly
selected models when using the local energy term only. The
significance of burial and contact energy for optimal model
selection is lower than the importance of the local energy
term. It is probably because the requirement for the conser-
vation of burial status is implicitly encoded in the mutation

matrices. It was shown that the matching of side chain
hydrophobicity in aligned sequences is the most important
feature of the majority of mutation matrices [31]. Thus, the
conservation of burial status is at least partially imposed dur-
ing the calculation of the alignment. On the other hand, side
chain hydrophobicity is the dominant component in two-body
interaction term [49]. This is in contrast to local propensities
information, which depends on pairs of consecutive amino
acids [42, 43] and cannot be entirely included in standard
mutation matrices.

Discussion

In this work, we introduce a Multiple Model Approach
(MMA) to comparative modeling. MMA uses alignment
ambiguities, which are one of the most serious problems in
comparative modeling, to explore the space of target-tem-
plate similarity. Series of models are prepared and evaluated
using threading algorithms. On a large number of examples,
it was shown that in the majority of cases, MMA correctly
identifies the best alignment, which is not possible using only
sequence information. In addition, it provides a reliable meas-
ure of model quality. MMA is easy to implement and all soft-
ware tools necessary for its application are easily available.

The importance of alignment accuracy can be easily seen
in the test models obtained in this study. Models built based
on erroneous alignments, although prepared using state-of-
the art alignment methods that statistically perform well,

Table 3 Test pairs of similar proteins used as the test cases for the Multiple Model Approach

Target Template Structural Fold type (SCOP) Sequence
class identity (GCG)

PDB length PDB length
code (aa) code (aa)

1. 2hhdA 141 2gdm 153 all alpha Globin-like 17.1
2. 256bA 106 1bbhA 131 all alpha Four-helical up-and-down bundle 23.6
3. 1aaj 105 1paz 120 all beta Cupredoxins 27.6
4. 1plc 99 1aaj 105 all beta Cupredoxins 20.2
5. 2sga 181 2lprA 198 all beta Trypsin-like serine proteases 34.8
6. 1aboA 58 1ckaA 57 all beta SH3-like barrel 22.8
7. 4fxn 138 1rcf 169 alpha/beta Flavodoxin-like 30.4
8. 5dfr 154 3dfr 162 alpha/beta Dihydrofolate reductases 28.9
9. 1aba 87 1kte 105 alpha/beta Thioredoxin-like 24.1
10. 1qorA 326 2ohxA 374 alpha/beta NAD(P)-binding Rossmann-fold domain 20.2
11. 1thm 279 2prk 279 alpha/beta Subtilases 22.1
12. 2dri 271 8abp 305 alpha/beta Periplasmic binding protein-like I 22.5
13. 1acf 125 1pne 139 alpha+beta Profilin-like 26.4
14. 1fca 55 1fxd 58 alpha+beta Ferredoxin-like 32.7
15. 9rnt 104 1rtu 113 alpha+beta Microbal ribonucleases 35.6
16. 1bunB 61 1tcp 60 small proteins BPTI-like 13.3
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contain errors as severe as completely incorrect matching of
disulfide bridges or completely misaligned elements of sec-
ondary structure. MMA allows one to worry less about the
quality of the single alignment. This approach can be ex-
tended to using different structural templates, if the choice
of one that is the most appropriate for modeling is not obvi-
ous, as presented on the example of S100A1 structure pre-
diction [44].

The importance of sequence alignment is stressed in the
manuals of comparative modeling programs, but is not widely
recognized as a significant problem despite numerous exam-
ples where comparative modeling failed, even when using a
correct template [23]. The author of the MODELLER pack-
age, which was used in our contribution, suggests an itera-
tive approach, i.e., the evaluation of a model produced using
an initial alignment, the correction of the alignment and pro-
ducing an improved model [45]. The approach presented here
can be viewed as a practical realization of these suggestions.
Calculation of many alignments and models can be done si-
multaneously, which allows an automation of the process. It
was shown that the use of different substitution matrices is
the easy way of generating alternative alignments.

One may wonder if it would be possible to solve the align-
ment ambiguity problem by developing an alignment strat-
egy that would work in every case. This seems unlikely for a
number of reasons. The amino acid properties that are most
important for conservation of structural features can depend
on the size and structural class of a given fold. The evolu-
tionary distance is another important parameter that differs
significantly between test pairs, which probably makes the
construction of one optimal alignment matrix and calcula-
tion of one set of gap penalties impossible. We have shown
that instead of searching for one optimal alignment protocol,
one may construct a set of alternative alignments correspond-
ing to various possible structural and evolutionary relation-
ships between sequences and defer the selection of the cor-
rect alignment to the stage of model evaluation.

Why is it possible to recognize the most accurate model
when the same is very difficult for the alignment? The con-
struction of the model imposes additional restraints on the
alignment and significantly improves the sensitivity of some
energy terms. At the stage of alignment construction, sepa-
rate fragments of the target sequence are equivalenced to frag-
ments of the template structure. The model building stage
can be regarded as a test of the geometric feasibility of the
connectivity between those fragments and of the consistency
of the interactions between them. It also provides a realistic
description of those parts of the target structure that do not
have an equivalent part in a template structure. All this infor-
mation is not included in one-dimensional alignment algo-
rithms.

An analysis of the energy terms leads to the conclusion
that the local energy term (which describes local propensi-
ties of amino acids towards different types of secondary struc-
ture) plays the most important role in the identification of
the best model. This stresses the importance of the correct
alignment of secondary structure elements and of the global
geometrical feasibility of the model. Random sequence simi-

larities may push the alignment into unphysical regions (e.g.,
too short loops), which results in a high strain of the protein
backbone in the model.

Model building starting from a template of relatively low
sequence homology to the target can be quite successful or
very disappointing. It should be stressed that MMA provides
a reliable measure of model significance. As pointed out in
the Results section, the threading score per residue allows
discrimination between two modeling cases. In the first case,
the sequence similarity corresponds to an important struc-
tural similarity, and MMA produces a reasonable model that
is consistently selected from those less reasonable. In the sec-
ond case, the structural similarity resulting from sequence
similarity is too low for any model to be useful. No criterion
using information from the sequences alone, such as the nu-
merical value of sequence identity or the statistical signifi-
cance of sequence alignment, allows one to distinguish be-
tween these two cases. The present results allow one to ex-
pect that MMA may lead to an extension of applicability of
comparative modeling to cases of low sequence similarity
(the range of 15-30% sequence identity) in the future.

The approach described here attempts to explore the al-
ternative alignments and conformational space more widely
than standard modeling techniques. It was shown that the
most accurate model could be much more easily identified
than the most accurate alignment. This is a result of addi-
tional geometrical constraints that are imposed on the align-
ment at the model building stage. MMA, which can be sum-
marized as the process of construction and evaluation of sev-
eral models based on a set of alternative alignments, leads to
a significant improvement in the accuracy of comparative
modeling.

Materials and methods

Protein pairs tested

Test pairs of sequence identity below 35% were selected from
the cases of unstable alignments described in the literature
and from a database of structurally similar proteins [46]. We
selected the pairs representing different structural classes and
fold types. Protein pairs forming the testing set are presented
in Table 3.

Calculation of the alignments

Four substitution matrices were selected from the best matri-
ces in ranking published by Argos and co-workers [24]. The
modified Dayhoff substitution matrix used in the popular GCG
package [47] was also included and identified as nwsgappep
in the tables. The mutation matrices were downloaded from
http://www.genome.ad.jp/ [31]. They were made positive as
recommended in [24], which is indicated by the plus sign.
Gap penalty parameters optimized for the substitution matri-
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ces were adapted from [24]. The alignments were calculated
using the GAP program from the GCG package [47], as sug-
gested by Argos and coworkers [24]. The differences in the
alignments were surprisingly large (see Fig. 2). Cases where
two mutation matrices yielded the same alignment were rare
and didn’t necessarily coincide with the alignment being cor-
rect.

To measure the significance of a given alignment on the
sequence level, the Z-scores were calculated as a difference
between the score obtained from the alignment algorithm for
a given pair of sequences and the average score obtained af-
ter randomization of the target sequence (50 randomized se-
quences were used).

As an additional test, the alignments were evaluated struc-
turally based on our knowledge about target structure. Two
measures of alignment accuracy were calculated. The global
measure of alignment accuracy was calculated as the value
Cα RMSD after optimal superposition of the target and the
template, where equivalent pairs of Cα atoms were defined
by the given sequence alignment. Contact map overlap be-
tween the target and the template, according to each align-
ment, was used as the local measure of alignment quality. It
is important to note that this strategy of alignment evaluation
is different from the one used by most authors, where the
alignment accuracy is calculated by comparing it position-
by-position with the “standard of truth” structural alignment
[24, 26]. It was recently shown [35, 36] that structural align-
ments may be ill-defined in themselves and, in most cases,
there are many possible alternative alignments of compara-
ble quality. In a complete parallel to the situation in sequence
alignments, the density of suboptimal alignments can be cal-
culated for structural alignments [48] and the width of such
distribution becomes quite large for distant homologues such
as the test pairs used in this work. Therefore, the structural
score of the sequence-based alignment is a much more mean-
ingful measure of its quality.

Model building and evaluation of the models

The models were built using the method of “satisfaction of
spatial restraints” implemented in the MODELLER program
[41]. A standard MODELLER routine ‘model’ was applied.

The models were evaluated with the score of threading
calculated with the use of energy parameters developed for
the topology fingerprint threading method [39] and, independ-
ently, by 3D profiles score [40]. We often use the term “en-
ergy” instead of “score”, which does not mean that those
numbers can be rigorously treated as real physical energies.
The units of “energy” roughly correspond to the value of one
kT at room temperature [49]. To allow comparison of scores
for proteins differing in length, we report the score per resi-
due. The same approach, i.e., using the threading energy of a
full atom protein model, was used to analyze interactions in
a family of structurally divergent homologous proteins [50].

Finally, the models were compared to the true structures
of the target proteins. Again, two measures of structural simi-
larity are used: a global measure of the root mean square

deviation between Cα positions (RMSD) and the local one as
defined by the contact map overlap [36, 48] (see Table 1).

For comparison, the internal measure of restraint satisfac-
tion provided by the modeling program (-ln(pdf)) is shown.
This measure does not directly focus on model energy, but
describes the degree to which structural restraints imposed
on the target by the template were satisfied.

It should be stressed that the MMA method, if used as a
prediction tool, does not require any knowledge about the
target three-dimensional structure. All the alignments and
models discussed in this study were prepared without any
knowledge of target structures. Comparisons of the target
structures with model and template structures were done only
to explore the possibilities and applicability of the MMA.

The local measure of structural similarity

Contact map overlap can be used as the local measure of
structural similarity [36, 48]. Here, it was used to evaluate
the accuracy of the alignments and protein models. Two con-
tact maps are equivalenced according to the alignment and
overlapping contacts are counted. This is described by the
following formula:
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 denote residue-residue contacts in proteins
A and B, respectively.CAB(i)AB(j)

B
 is the contact map of pro-

tein B renumbered according to the alignment AB. The nor-
malization factor Nc is the maximal possible value of over-
lap, equal to the number of contacts in the smaller of the two
proteins. The same formula is used to calculate the value of
contact map overlap between the native structure and the pro-
tein model. In this case, there is a simple correspondence
between two contact maps that are of equal size. Thus no
renumbering of contacts is necessary and the overlapping
contacts are simply counted.

Threading energy function

The threading energy of a protein is a function of a subset of
structural parameters of the protein. This subset of param-
eters is a simplified description of protein structure (topol-
ogy fingerprint of the protein [39]). This simplified descrip-
tion makes statistical derivation of potentials of mean force
feasible. All the potentials of mean force used in this contri-
bution were derived from the database of high quality pro-
tein structures using the inverse Boltzmann law [42, 49].
Threading energy is a function of the following parameters
of protein structure:

1. The local conformation of the protein backbone de-
scribed by “chiral” squared distances between Cα atoms of
residues (i-1) and (i+2). This parameter is closely related to
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the secondary structure. The corresponding potential of mean
force is related to the secondary structure propensity.

2. The burial status of the side chains in the sequence
(the side chain is classified as buried if at least 70% of its
surface is screened from the solvent). The corresponding po-
tential of mean force describes the energy resulting from ex-
posing a given side chain to the solvent or burying it in the
protein interior.

3. The contacts between side chains (the side chains i
and j are classified as interacting if the distance between any
pair of heavy atoms in the side chains is less than 5 Å). The
contact information defines the contact map of the protein.
The corresponding potential of mean force describes the ef-
fective attraction or repulsion of the side chains.

The threading energy estimate of the protein is the func-
tion of parameters 1-3. It is described by the following for-
mula:
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ij i j

i ji

= + +

+

+ − +

>

∑ ∑
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ε , , *

,

,1 1 2
2

2

Γ

where: i, j are numbers of positions along the sequence;
Ai, Aj are residue types found at these positions;
r *i 1,i 2

2
− +  is the value of the “chiral” squared distance be-

tween Ca i-1 and Ca i+2 atoms;
Γi

A  is the burial status of a side chain i;
Cij  describes a contact between side chains i and j (Cij =1 if
i and j are in contact, otherwiseCij =0).

The functions ε , E1 and E2, describe local, burial and con-
tact interactions, respectively.
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