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Abstract One of the biggest problems in modeling distantly related proteins is the quality of the tar-
get-template alignment. This problem often results in low quality models that do not utilize all the
information available in the template structure. The divergence of alignments at a low sequence iden-
tity level, which is a hindrance in most modeling attempts, is used here as a basis for a new technique
of Multiple Model Approach (MMA). Alternative alignments prepared here using different mutation
matrices and gap penalties, combined with automated model building, are used to create a set of mod-
els that explore a range of possible conformations for the target protein. Models are evaluated using
different techniques to identify the best model. In the set of examples studied here, the correct target
structure is known, which allows the evaluation of various alignment and evaluation strategies.

For a randomly selected group of distantly homologous protein pairs representing all structural classes
and various fold types, it is shown that a threading score based on simplified statistical potentials of
mean force can identify the best models and, consequently, the most reliable alignment. In cases where
the difference between target and template structures is significant, the threading score shows clearly
that all models are wrong, therefore disqualifying the template.
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analysis are used. They yield a quantitative measure of se-
quence similarity (score) and a position-by-position equiva-
) ) ) ) lence between the two proteins, i.e., the sequence alignment
Comparative modeling, the most reliable protein structurgo]. sych an alignment could be used subsequently to build
prediction method in existence, is based on the remarkably three-dimensional model. This paradigm forms the basis
simple but far-reaching observation that proteins with simi-of the very active comparative modeling field [3-9]. Build-
lar sequences fold to similar structures [1]. To identify thising the three-dimensional model of a new protein when only
similarity, the well-developed tools of protein sequenceine sequence is known (we call this protein a predi¢éion
get) can be divided into three logical steps:

e identifying an appropriate proteitemplate (a ho-
mologous protein whose structure has already been solved)
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« calculating the alignment of the target sequence wittanned” alignment programs, which may also contribute to
this template the lack of appreciation of the “alignment ambiguity prob-

e building the three dimensional model. lem”.

Comparative protein modeling is a method of very practi- The alignment protocol based on the dynamic program-
cal importance with many algorithms available as commening algorithm [29, 30] requires two types of parameters: a
cial [10-12] packages or on Web sites [13]. Also, some cosubstitution matrix and the penalties for introducing gaps into
mercial programs are available for free for the academic cadime alignment. The first group of parameters yields informa-
munity [14, 15]. tion about the probability of one amino acid being replaced

The first stage of a modeling process is identifying a telmy another via muten. The deriviion of mutation matri-
plate, for instance, by a standard sequence similarity seared can rely on various information sources, such as struc-
in a database containing sequences of all proteins with kndwral equivalence of numerous protein sequences, genetic code
three-dimensional structes. The step isften considered similarity, chemical similarity of amino acids, hydrophobicity
trivial. Indeed, if a closely related template protein is presentlex, physical property indices, main chain folding angles,
in the database of known structures, any of the large numixantact potential and neighborhood selectivity [31]. Over forty
of publicly available programs can be used to find it. Howarious mutation matrices have been derived by various groups
ever, if such template does not exist, problem becomes d#fitd most were recently collected, systematically analyzed
cult. In recent years, a large effort was put into developiagd made publicly available on the Internet [31]. The second
algorithms that are able to recognize protein homologies dyge of parameter is the gap introduction and extension pen-
structural similarities beyond the level of easily identifiablalty [2], which have no clear physical interpretation and are
homology [16-19].A success of the fold prediction algorithmssually determined by trial and error.
greatly increased the range of application of the comparativeThe alignment methods and parameters can be tested for
modeling technique but, at the same time, because the stpuotein pairs where both structures are known. For instance,
tural similarity between distant homologues is smaller, ithe structural alignment can be treated as the standard of truth
creased the level of difficulty on the two subsequent stepf24, 25] and various sequence alignment strategies can be

In the next step, which is often merged with the templaggaluated by their ability to reproduce it. Argos and coworkers
recognition step, residues of the target sequence are assigsed this approach in a comprehensive test of different muta-
to the residues of the template, i.e. the target-template alition matrices and gap penalties [24]. They tested as many as
ment is prepared. In the third step, a model of the target pté-mutation matrices, optimizing the gap penalty parameters
tein is built on the scaffold of the template structure by sidier each matrix. It was shown that the quality of the align-
chain repacking and linking the fragments of aligned struoent dramatically depends on the type of mutation matrix
ture [9, 20]. This step is usually done with the use of speciaid the values of the gap penalties used, which must be
ized modeling software [10, 121]. At this final stage, it is optimized separately for each mutation matrix. Unfortunately,
usually impossible to correct errors that result from mistakes shown later in this paper, the distribution of alignment
made in the earlier steps [22]. Consequently, problems wéttcuracy for different alignment methods can be very large.
the alignment step remain the main reason for errors in fhenethod of alignment calculation, which is optimal in the
comparative modeling and often result in comparative magtatistical sense, could actually produce very wrong align-
eling not taking full advantage of the extent of structural simientsin a number of specific cases.
larity between the target and the template [23]. The alignment is usually trivial if the sequence identity of

The inherent problems with the alignment preparation dhe target and template is higher than 50% of identical amino
often unappreciated. This is probably because in most apatids. With protein sequence identity ranging from 30 to 50%,
cations, only closely homologous proteins are being cosignificant shifts between different alignments emerge in some
pared where the alignment is unique and easy to find. In megions, mostljyjoops. When sequence identityogs below
cent years, there have been very few serious attempts t0380846, the alignments become very unstable, changing dra-
dress the problem of alignment quality and those have camatically with scoring matrices and gap penalties [24]
centrated on the problem of optimal alignment parametarsd they become essentially random for structurally similar
[24] or identification of the reliable fragments of the alignproteins with undetectable sequence similarity [32-34]. It is
ment [25, 26]. Standard algorithms can efficiently calculaiteportant to point out that the increasing alignment ambigu-
the score of the best alignment between two proteins atydvith decreasing sequence similarity is not a technical prob-
provide one alignment (from many) having this score. Whatm that could be overcome by improving alignment algo-
they don't tell is how many different alignments have scorgthms. It reflects two partly independent problems, both of
identical to or very close to the optimal one, and how diffeshich are related to the fundamental features of the sequence-
ent these alignments are. The information about suboptirelicture relationship in proteins. The first is that tkiemt
alignments [27, 28] gives some hints about how unique thfesequence similarity decreases with increasing evolution-
alignment is. It could be used also to identify the regionsarfy distance between proteins, and at a certain point detect-
both molecules where the similarity is strongest, which sonadle sequence similarity is confined only to a small part of
times coincides with the most reliable fragments of the aligmth molecules. This problem could be addressed by chang-
ment [26]. Unfortunately, the information about the suboptirg the definition of sequence similarity and using some struc-
mal alignments is not available from any of the populéural information in the scoring function, as it is done by
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Table 1 Alignment and model characteristics for test casesrrect answer to be known and are used here only to evalu-
of comparative modeling. Values calculated using the cate various modeling strategies
rect target structure are highlighted. Such values require the

case The alignments The models
target mutation z-score sequence contact o C contact @ threading 3D -In(pdf)
template matrix identity map RMSD map RMSD energy profiles Modeller
overlap[a] [a] overlap[b] [b] [c] [d]
1. benner 74 + -7.1 16.3 54 3.07 63 2.87  -0.109 52.06 594
2hhdA  blossum62 + -6.4 16.3 50 3.53 56 3.30 -0.053 43.73 605
2gdm gonnet + -7.4 16.3 54 3.07 63 2.87  -0.109 52.06 594
nwsgappep -4.9 17.0 49 4.16 57 3.93 -0.025 34.50 648
str + -6.7 17.0 49 4.16 57 3.93 -0.025 34.50 648
2. benner 74 + -4.4 27.4 33 6.66 50 593 -0.119 33.49 550
256bA  blossum62 + -5.8 311 40 6.03 53 490 -0.219 34.21 551
1bbhA  gonnet + -4.5 27.4 33 6.66 50 5.93 -0.119 33.49 551
nwsgappep -3.7 23.6 27 7.46 34 7.09 0.086 24.24 442
str + 5.1 29.2 35 6.54 51 5.48  -0.236 32.44 699
3. benner 74 + .0 27.6 29 8.17 30 8.92 0.002 23.28 759
laaj blossum62 + -4.4 34.3 25 10.09 37 11.58 0.044 23.73 634
lpaz gonnet + -2 29.5 25 9.69 29 10.56 0.016 22.50 781
nwsgappep -6.7 27.6 30 8.13 32 9.16 0.034 24.57 803
str + -.8 30.5 31 8.58 37 9.53  -0.007 26.11 740
4. benner 74 + -5.4 25.3 48 5.93 57 5.62  -0.118 38.95 708
1plc blossum62 + -6.5 26.3 48 5.53 55 537 -0.129 39.57 704
laaj gonnet + -5.5 24.2 54 5.43 58 468  -0.145 33.49 707
nwsgappep -8.4 20.2 49 4.33 50 565 -0.122 37.95 817
str + -4.2 18.2 22 12.96 24 13.63 0.047 40.60 782
5. benner 74 + -14.7 37.6 58 2.88 68 246  -0.144 84.73 2429
2sga blossum62 + -14.6 38.7 59 2.92 66 254  -0.144 87.53 2452
2lrpa gonnet + -14.9 38.1 58 3.02 66 249  -0.122 81.80 2410
nwsgappep -11.7 34.8 61 2.14 70 202 -0.121 87.47 1484
str + -16.9 37.0 65 1.98 73 1.73  -0.162 88.74 1628
6. benner 74 + 9.1 26.3 62 1.63 73 185 -0.216 22.98 365
laboA  blossum62 + -7.8 28.1 51 1.87 62 2.03 -0.167 19.23 381
lckaA  gonnet + -8.8 28.1 53 1.82 57 2.01 -0.185 17.83 359
nwsgappep -8.7 22.8 49 1.94 50 2.12  -0.180 14.91 264
str + -9.4 22.8 49 1.94 50 2.12  -0.180 14.91 264
7. benner 74 + -5.1 28.3 39 7.47 44 5.75  -0.085 49.03 1152
4fxn blossum62 + -7.4 31.2 34 7.39 38 6.40 -0.019 42.30 1592
Lrcf gonnet + -5.2 28.3 39 7.47 44 5.75  -0.085 49.04 1152
nwsgappep -6.6 30.4 40 6.03 40 496  -0.050 50.33 1454
str + -6.9 29.0 39 5.68 45 5.40 0.003 39.74 1782
8. benner 74 + -14.5 28.6 70 191 74 191 -0.184 64.31 859
5dfr blossum62 + -12.9 29.9 64 2.47 71 235 -0.103 55.39 1032
3dfr gonnet + -13.7 28.6 70 1.91 74 191 -0.184 64.31 859
nwsgappep -14.0 28.6 61 2.21 68 2.23 -0.104 55.05 987

str + -14.6 31.2 57 2.63 64 2.59 -0.160 59.97 1285
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Table 1 (continued)
case The alignments The models
target mutation z-score sequence contact a C contact @ threading 3D -In(pdf)
template matrix identity map RMSD map RMSD energy profiles Modeller
overlap[a] [a] overlap[b] [b] [c] [d]
9. benner 74 + -1.5 19.5 16 10.14 17 9.96 0.146 13.48 659
laba blossum62 + -2.0 28.7 34 6.62 39 6.39 -0.041 17.95 439
lkte gonnet + -1.6 23.0 15 9.97 13 9.65 0.156 12.31 596
nwsgappep -1.7 24.1 32 4.77 40 5.08 0.077 22.49 468
str + -1.9 13.8 15 9.60 12 9.51 0.015 11.49 606
10. benner 74 + -6.1 21.8 20 14.75 20 14.39 0.029 106.64 3372
lgorA  blossum62 + -6.9 255 28 12.51 32 12.18 -0.010 90.33 4851
20hxA  gonnet + -6.1 22.4 20 14.80 21 14.39 0.036 103.71 3454
nwsgappep -5.3 20.2 18 15.30 20 15.68 0.020 103.42 4737
str + -5.5 19.3 18 14.96 19 14.64 0.075 90.80 3344
11. benner 74 + -18.5 34.4 55 3.88 56 4.48 -0.111 112.79 2634
1thm blossum62 + -21.5 36.9 53 4.34 59 4.37 -0.177 120.48 2655
2prk gonnet + -18.5 34.4 52 4.13 54 414  -0.133 114.13 2157
nwsgappep -22.1 33.7 50 3.93 50 449  -0.105 113.48 2830
str + -22.3 34.4 58 3.79 61 4.38 -0.148 12439 2704
12. benner 74 + -12.4 22.9 40 4.26 50 4.78 -0.155 91.77 1945
2dri blossum62 + -11.0 24.4 41 4.38 51 425  -0.156 90.34 1771
8abp gonnet + -12.0 23.2 42 4.10 51 3.75 -0.098 81.25 1699
nwsgappep -9.4 22.5 40 5.29 50 5.01 -0.036 68.77 1763
str + -10.2 23.2 44 3.75 54 3.66 -0.168 99.89 1785
13. benner 74 + -7.3 26.4 44 6.16 48 5.44  -0.112 57.20 759
lacf blossum62 + -7.7 27.2 44 5.90 49 5.49 -0.070 57.82 779
1lpne gonnet + -7.3 26.4 42 6.20 50 5.43 -0.119 58.26 834
nwsgappep -4.8 26.4 49 3.53 56 2.61 -0.186 53.83 771
str + -5.2 25.6 42 5.93 49 549  -0.130 53.61 616
14. benner 74 + -7.6 30.9 43 3.83 43 3.70 0.018 11.05 249
1fca blossum62 + -6.4 34.5 44 3.44 48 3.18 0.035 11.64 249
1fxd gonnet + -7.5 32.7 47 3.28 48 2.85 -0.104 14.27 253
nwsgappep -5.5 32.7 39 3.96 39 3.87 0.073 9.89 257
str + -7.3 32.7 39 3.96 39 3.87 0.073 9.89 257
15. benner 74 + -13.2 35.6 62 3.29 68 3.15 -0.261 47.68 689
9rnt blossum62 + -13.0 375 62 3.42 63 3.15 -0.244 42.76 590
1rtu gonnet + -13.4 35.6 61 3.30 67 3.17 -0.244 43.35 717
nwsgappep -10.7 35.6 56 3.66 56 3.65 -0.227 39.76 831
str + -11.7 36.5 59 3.30 64 3.15 -0.225 47.00 716
16. benner 74 + -1.9 20.0 26 4.42 28 3.99 -0.195 20.66 408
1lbunB  blossum62 + -1.6 25.0 27 4.36 26 4.04  -0.165 17.76 457
ltcp gonnet + -1.9 21.7 13 4.78 20 444  -0.148 13.89 533
nwsgappep -2.4 13.3 23 8.24 21 9.94 0.060 15.36 967
str + -1.9 20.0 16 4.52 15 4.65 0.005 17.33 472

[a] Target and template structures are compared
[b] Models are compared to their respective target structUi@sThe lowest value indicates the best model

[c] The highest value indicates the best model
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Figure 1la Plot of density of suboptimal alignments for pairEigure 1b Plot of density of suboptimal alignments for pairs

of proteins with different level of sequence similarityf proteins with different level of sequence similarity.

Pseudoazurin frorAlcaligenes faecali€lpaz)), pseudoazurin Pseudoazurin fromAlcaligenes faecaliglpaz) with

from Achromobacter cycoclastegth 68% sequence identitypseudoazurin froriMethylobacterium extorquerf®DB code
1pmy) with 45% sequence identity

threading algorithms. Surprisingly, although such methodsing widely available software paclkesg As shown in the
are able to recognize many similarities that are impossibleptper, on several test cases, this approach gives consistently
detect on the sequence level, so far it has not resulted in getd results.
ter quality alignments. The second problem behind sequencédo produce a high quality model of a target protein, which
alignment ambiguities is that with increasing evolutionamyould be as close to the real structure as the actual similarity
distance between proteins, even the structural alignmemsween template and target would allow, we propose the
become ambiguous [35, 36]. Position-by-position equivalendailtiple Model Approach consisting of the following steps:
between two protein structures may depend on how we de-l. Exploration of the alignment diversity by using vari-
fine the similarity between them [36]; thus, in many casesjs alignment parameters.
sequence alignment may correctly represent reality by being2. Elimination of alignments incompatible with some
ambiguous. conserved features of target and template sequences (some
In such cases, comparative modeling could still work profeatures might be known prior to target structure determina-
erly because the structural similarity is sufficient. There at&n - active and binding sites, disulfide bridges, etc.).
however, two problems to be solved: how to obtain the best3. Construction of full-atom models using all the remain-
possible alignment without the benefit of using both struitig alignments.
tures to evaluate it and how to estimate the distance betweed. Selection of the best model using the value of the
the model and (unknown) target structure. If the modelitizyeading energy as a criterion of model accuracy.
algorithm fails for any reason, we should at least know that5. Assessment of the model accuracy using the value of
the resulting models are inaccurate. threading energy.
A standard approach, suggested by modeling package
manuals, is to prepare the alignment using one of the well-
known substitution matrices and to assess the quality of H@gults
single resulting model. It is suggested that the alignment

should be “corrected” if there is evidence that the model is of ) i ) o
low accuracy. In this contribution, we present a semi-aufd-Set of 16 protein pairs, presented in detail in the Methods

matic extension of this approach, which could be implemenf&ftion, was chosen to represent weakly homologous pro-
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Figure 1c Plot of density of suboptimal alignments for pairsigure 1d Plot of density of suboptimal alignments for pairs
of proteins with different level of sequence similaritypf proteins with different level of sequence similarity.
Amicyanin (PDBcode laaj) aligned with pseudoazurin froAmicyanin (PDBcode laaj) aligned with plastocyanin from
Alcaligenes faecali¢lpaz) with 29% sequence identity  poplar leaves (PDB code 1plc) with 24% sequence identity

teins of different structural classes. Several pairs repressstond. On a plane, we can present all possible alignments
actual examples where published sequence alignments, petween two proteins, using a third dimension to represent
pared before the structural determination of the target, wémeir score. In plots shown in Figure 1, only alignments whose
wrong. For these proteins, the MMA approach, as presensedres differ from the optimal one by 10% or less are shown
above, is applied and described in detail below. The resualtel only the best score is displayed for eymint. There-

and their analyses are presented in Table 1. Structures ofoa#l, the single line denotes a unique alignment within the
proteins in this set are currently known; therefore, the resutip 10% of the top score. If the line gets wider, it means that
shown are not genuine predictions but are presented meather alternative alignments with similar scores are present.
to illustrate the MMA procedure. To stress this point, in T#-large alignment variations are possible within small score
ble 1, values obtained using the actual target structure differences, this strongly suggests that the alignment is not
printed on gray background. These values were used onjl defined in a given region. The most interesting situation
“outside” the actual MMA procedure to evaluate and discusgses where the line splits into several parallel lines, mean-

its results. ing that few non-overlapping alignments with similar scores
are possible.
The alignments For test pairs No. 3 (amicyanin (1aaj) vs. pseudoazurin from

Alcaligenes faecali€lpaz)), two other proteins, pseudoazurin
As mentioned in the Introduction, the alignment between tffom Achromobacter cycoclastesith 68% sequence iden-
proteins becomes increasingly unstable with the decreadityy and pseudoazurin frorMethylobacterium extorquens
sequence similarity between them. This could be illustratgdDB code 1pmy) with 45% sequence identity to 1paz, were
by looking at the plot of suboptimal alignments for proteichosen. Finally, amicyanin is compared with plastocyanin
pairs with a different level of sequence similarity. Every aligiirom poplar leaves (1plc), the fourth pair from Table 1. The
ment can be thought of as a position-by-position equivalerstgnsity of suboptimal alignments is displayed for all four
between the two pteins. There are margossible align- pairs (see Fig). Ascan be seen in Figure 1, the picture
ments, and the one that is usually reported maximizes ¢hanges qualitatively between pairs with sequence similarity
similarity score (or minimizes the distance) between two pr@bove 30% and for pairs below that level. For closely related
tein sequences [2]. Every alignment can be visualized agrateins, the alignment is essentially unique, as represented
series of points on a plane, where a presence of the pointlfiyja single black line on Figures 1a and 1b. With lower se-
means that this particular alignment included the equivalemgeence similarity, large areas of ill-defined alignments ap-
between position i from one sequence with position j in thear (compare Figures la and 1b) and, finally, for the two
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HHHHHHHHHHHHHHHHHHHHHH—HHHHHHHHHHHHHHHHHHHHHHE—

obtained with different mutation matrices in a dot-matrix represent, seen as parallel lines on Figure 1c or 1d.

resentations of alignments. Abbreviations for mutation ma- As mentioned in the Introduction, none of the widely avail-

trices are identified in the Methods section. Best alignmeiaisle alignment packages allows one to explore the subopti-
are shown as continuous lines. Other alignments, where difal alignments. Therefore, we explore the diversity of align-
ferent from the best ones, are shown as dashed lines. Theresit using a different method. For a given target-template
(first) and the worst (second) sequence alignments are shqair, we align them using several mutation matrix-penalty
in detail, with an indication of the mutation matrices usedap combinations, optimized independently to produce rea-
Positions of secondary structure elements, defined by themnable alignments [24]. The connection between the width

DSSP assignments, are shown below the sequence alignment
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of distribution of suboptimal alignments and the differencd&able 2 The performance of different threading energy terms
between optimal alignments obtained with different scorifig distinguishing the best model

matrices and gap penalties is not established. However, both
explore the same effect and both undergo the same qualﬂ,ﬁ- -

. O eading
tive change at the same level of sequence similarity. For in-
stance, one can compare Figures 1d and 2b, which presen
picture of alignment diversity for the same protein pair of

number of correct models
ergy term distinguished using only this term

amicyanin and plastocyanin. Alignment ambiguity at the Necal energy 7
terminus and around position 60-70 is captured in the saimérial energy 5
way in both methods. contact energy 5

For each test pair, several different alignments were obum of all terms 11

tained (see Fi2 and Tale 1) following the procedure de-
scribed in the Methods section. The differences between the
alignments were quite large even for the test pairs where S€11e differences between alignments can be of various
guence identity is above 30%. We can quantify these differ- 9

; . . . . In som ifferen re mi-
ences using structural information about both proteins, whithPPes and consequences. In some cases, differences are

is not a part of the MMA procedure since it requires knowfo" involving mostly shifts in loop regions and on edges of

edge of the target structure. The percent of conserved in%ﬁp_ondary structure elements. For some cases, e.g., Sdir/3dfr

residue contacts can change by a factor of 2, dependin Eﬁmﬁnﬁ (see :ég r?A),fstmaltlrgﬁdps a_‘lfﬁ also obssr\rﬁd ::i_one
the alignment procedure used. The differences in alignme e helices and one of tBestrands. These apparently

are not limited to outside loops, but also extend to the o shifts in alignment can result in substantial deviations in
regions (see Fi). Theglobal measure of structural Simi_models. It is widely accepted that gaps in alignments should

larity, C, RMSD (oot mean square deviation) [37, 38], al e placed mostly in loops outside'the continuous secondary
can éhgw a large variation for a single test pair frbm a{cce ucture elements. Nevertheless, in several cases a more cor-

able values of 2-4 A to a practically meaninaless 7-15 A Tz)eef:t model is obtained if the alignment procedure introduces
P Y 9 : ap in one of the secondary structure elements. It happens,

Ca RMSD can be calculated for alignments, compar@@f. . . )
equivalenced residues from target and template structure, gpdnstance, with the 256bA/1bbhA pair (see Fig. 2D) where

for final models, comparing model and target structures. B&tH ahg_nment W'th a large gap in the middle of the N-termi-
values are reported in Table 1. nal helix results in a much better model than an alignment

; : - e ith no big gaps in the central parts of the helices. The re-
In several cases, there is a difference in sensitivity BN ;
tween the two measures of alignment accuracy: contact rﬁ\%{gmg models have 5.48 and 7.1 A RMSD, respectively, rela-

to the target structure. A similar case is the 1bunB/1tcp
overlap and CRMSD. The value of (RMSD changes much _ = . ; .
more rapidly with distance from the optimal alignment. ThEalr (see Fig. 2C), where the better alignment has a gap in

reflects the fact that this measure of model quality is m middle of ap-strand. What is even more puzzling, the

global - it is very sensitive to regions of weak structural si est model for this protein was obtainetien ana-helix

larity and changes of relative positions of otherwise similaf> partially matc_hed tofastrand. In this case, petter allgn-_
ment can be easily selected based on matching 6 cysteine

protein segments. : o ; .
Unfortunately, in a real life situation where the target strurceis'dmaS that form 3 disulfide bridges present in the template

ture is not known, we are not able to distinguish betwe%ﬂd target proteins. The alignments obtained using benner74

different alignments. Each of the mutation matrices used gl nwsgappep mutation matrices correctly match 5 and 2

performs very well on a large set of protein pairs [24]. At tﬁgsfgtiéfgfsiis’a1iesn%gg\t/§|dyi.ﬁer in a more sianificant wa
same time, for the set studied here, each matrix in at Iergs{ . allg 9 Y.

one case produces the worst alignment (and in at least O'reexample, in the 1plc/laaj case, (see Fig. 2B) one of the

case the best). The benner74 matrix performs best in the | nmmﬁ?tinmlethpgs doﬁst nhotvrecognrlrzeestfgit d;n E:er;rglnq[ailn
est number of cases, but overall has only 40% correct hits, € aaj does not have a corresp g seg

s ftn observed tat for a gven st p one of e mAf, T (SIS 1 8 o rbetand 1 e et
tion matrices works much worse than the other, demonst 9

ing that reliance on one alignment protocol is dangerous.,,’ A (for the better alignment) to a meaningless 13.7 A for

It is noteworthy that the z-score measuring significangée worst alignment.
of a given alignment in terms of its matrix score, as described
in the Methods section, does not distinguish correct from ip-
correct alignments. In some cases, alignments with the blﬂg‘? models
z-scores are actually the worst from the structural point of
view. Another interesting observation arising from this studys discussed in the previous paragraph, for all 16 cases, align-
is the fact that sequence identity is a very poorly defingtents prepared with different mutation matrices show sig-
quantity for protein pairs of low homology. As can be seenfificant divergence and, using only information contained in
Table 2, different mutation matrices can yield sequence idéhe sequence we are not able to recognize the best align-
tity values differing more than 10% (in absolute values). ments. Therefore, in this section, models built based on vari-
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Figure 3a Ribbon diagrams
of target and template struc-
tures compared with two
model structures, the best one
and the worst one. Abbrevia-
tions for mutation matrices
are identified in the Methods
section. 1plc vs. laaj. Posi-
tions of secondary structure
elements are calculated using
the target structurenot the
model structures

Figure 3A: The structures of 1plc and lagj and the best and the worst model of 1plc.

ous alignments will be analyzed. We want to stress that @losen over a 4.7 A one. The value of an alignment z-score
scores discussed here were calculated without referenceelects the best model in only 5 cases. An internal measure of
the target structure; therefore, they could also be calculateddel quality supplied by the MODELLER program [41] is
for bona fidepredictions. able to distinguish the best model in 4 cases only. It is not
As seen in Table 2, threading approaches do a very gsadprising though, since this function does not describe the
job at recognizing the best model. In 11 of 16 test cases, ghgsical quality of the model, only the degree of satisfaction
models yielding the lowest value of threading energy weséthe imposed restraints. These numbers can be compared to
closest to the native target structure (see Table 2). In 9 cafesrandom choice of models, which should give 3 correct
the models judged to be worst by this criterion are those thés.
differ most from the native structure. The identification of The cases where the threading score did not pick up the
the more accurate models is much better in cases whemadel closest to the native structure are special because the
least one model is close to the native structure. It cantheget and template structures have relatively little similar-
easily rationalized, since small differences between vaty In one of 5 such cases (1aaj/lpaz), only the central parts
wrong models are probably meaningless. In other words, afZzhe sequences have a common fold. The N-terminal part
A difference between a 2.5 A and 4.5 A model is importanf, the target has no corresponding fragment in the template
but the same difference between a 9 A and 11 A modekiructure, which results in an unacceptab|eRMSD above
probably not. The tieading energy calculated with the to8 A. This value simply tells us that the template chosen is
pology fingerprint threading algorithm [39] gives very simiinappropriate for modeling the given target. This is in agree-
lar results to the 3D profiles score [40]. Both methods choasent with the high values of the threading score for all the
the best alignment in the same number of cases and, in moeels for this target/template pair. In the other four cases
case, they are both wrong in the same way. However, in (aB6bA/1bbhA, 4fxn/1rcf, laba/lkte and 1thm/2prk ), the
cases where the 3D profiles are wrong, they are often cataviation of best models from the native structure is in the
pletely wrong, picking the worst model such as in the caserafge 4-6 A. It should be noted that in three of those four
1plc/laaj where a nonsensical 13.61 A RMSD alignmentciasses the models picked up by the criterion of a threading
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Figure 3b Ribbon diagrams
of target and template struc-
tures compared with two
model structures, the best one
and the worst one. Abbrevia-
tions for mutation matrices
are identified in the Methods
section. 256b vs. 1bbh. Posi-
tions of secondary structure
elements are calculated using
the target structurenot the
model structures

<7
256bA (model str+)
Tay
) c

Figure 3B: The structures of 256bA and 1bbhA and two models of 256bA.

score have the second lowest deviations from the native stfutfor the model than the assignment of the target’s helices
ture. to coil regions of the template structure. In this case, the model
Figs. 2B, 2D, 3A and 3B illustrate the influence of thselected by the criterion of the lowest value of threading score
alignment and the template structure on the model. In tréerion is not the most accurate one. However, the selected
case of the 1plc/laaj pair, the N-terminal part of the aligmodel and corresponding alignment are still much more ac-
ment is unstable (Fig. 2B). Consequently, a very inaccurategate than the worst one (see Fig. 3B).
model is obtained using the str+ mutation matrix. However, Another interesting case is the 1qorA/2ohxA pair (se-
even in the best alignment (calculated using gonnet+ mujaence identity in the range 19-25%), where the target and
tion matrix), the N-termina3-strand of 1plc is incorrectly template sequences are longer than 3dues. Vdous
assigned to a coil segment in the laaj structure despitedlignment parameters produce a series of models yjth C
existence of a corresponding strand. Therefore, the N-terRMSD in the range 12-15 A and a threading score in the
nal fragment of this model has a wrong backbone directi@nge of -0.1 to +0.08, which indicates that all models are of
(see Fig3A). This confirms the knowratt that significant very low accuracy. However, local similarity of the native
errors occurring at the stage of alignment calculation canstucture and the models is much higher - up to 32% of con-
be corrected at the stage of model building. The most prgbfved interresidue contacts for the best model. It is obvious
able reason of alignment instability in this case is that the tRat for larger protein structures, the discrepancy between
terminal part of the template structure has no correspondihg local and global measure of structural similarity is higher.
part in the target. Aus, the N-terminal fragments of the tarin this case, the most accurate model has the best threading
get sequence have many possible places to be assigned $oare.
the “dangling” N-terminal fragment of the laaj structure.  Based on the present results (see Table 1), the following
The case of the 256bA/1bbhA pair is an example of ermode of thumb can be formulated. If the threading score-per-
neous matching of secondary structure elements. As camdsidue is below -0.1, one can be confident that the method
easily observed (see Figs. 2D and 3B), the gaps introducedhooses the best model and the model is correct. Values of -
the secondary structure elements of the target are less h& 0.0 correspond to models that should be used with cau-
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Table 3 Test pairs of similar proteins used as the test cases for the Multiple Model Approach

Target Template Structural Fold type (SCOP) Sequence
class identity (GCG)
PDB length PDB length
code (aa) code (aa)
1. 2hhdA 141 2gdm 153 all alpha Globin-like 17.1
2. 256bA 106 1bbhA 131 all alpha Four-helical up-and-down bundle 23.6
3. laaj 105 1lpaz 120 all beta Cupredoxins 27.6
4. 1plc 99 laaj 105 all beta Cupredoxins 20.2
5. 2sga 181 2IprA 198 all beta Trypsin-like serine proteases 34.8
6. laboA 58 1ckaA 57 all beta SH3-like barrel 22.8
7. 4fxn 138 Lrcf 169 alpha/beta Flavodoxin-like 30.4
8. 5dfr 154 3dfr 162 alpha/beta Dihydrofolate reductases 28.9
9. laba 87 lkte 105 alpha/beta Thioredoxin-like 24.1
10. 1qgorA 326 20hxA 374 alpha/beta NAD(P)-binding Rossmand-flomain 20.2
11.  1thm 279 2prk 279 alpha/beta Subtilases 22.1
12.  2dri 271 8abp 305 alpha/beta Periplasmic binding protein-like | 225
13.  lacf 125 1pne 139 alpha+beta Profilin-like 26.4
14. 1fca 55 1fxd 58 alphatbeta Ferredoxin-like 32.7
15.  9rnt 104 1rtu 113 alphatbeta Microbal ribonucleases 35.6
16. 1bunB 61 ltcp 60 small proteins BPTI-like 13.3

tion, carefully analyzed and perhaps rebuilt while variationsatrices. It was shown that the matching of side chain

in alignments should be explored (i.e., different gap parahydrophobicity in aligned sequences is the most important

etes). \alues above 0.0 indicate templates inadequate feature of the majority of mutation matrices [31]. Thus, the

given target structures. In the latter case, all the models canservation of burial status is at least partially imposed dur-

be regarded as being incorrect. ing the calculation of the alignment. On the other hand, side
chain hydrophobicity is the dominant component in two-body
interaction term [49]. This is in contrast to local propensities

An analysis of energy of the models information, which depends on pairs of consecutive amino
acids [42, 43] and cannot be entirely included in standard

The terms of the threading energy of the models were calpuitation matrices.

lated separately and analyzed to answer the following ques-

tion. Are all energy termsqually important for distinguish-

ing the best model? : :

As illustrated in Table 2, all energy terms take part in S%I_SCUSSIOH

lecting the best model. The sum of all energy terms works , )
much better than each energy term alone. In two cases!Th&is work, we introduce a Multiple Model Approach

single energy term was able to distinguish the best modMMA) to comparative modeling. MMA uses alignment
but the sum of all energy terms indicates which one is f&Piguities, which are one of the most serious problems in
closest to the native structure. comparative modeling, to explore the space of target-tem-
These data exclude the possibility that distinguishing gate similarity. Series of models are prepared and evaluated
tween models of different quality is only the result of stra$ing threading algorithms. On a large number of examples,
in the protein backbone caused by an incorrect a|ignm_5n\e/a§shown that in the majority of cases, MMA correctly
between the target sequence and the template. This straifl§8ifies the best alignment, which is not possible using only
probably the most important and easily detectable resultS§AUeNce mformqﬂon. In aqldltlon, it prowdes areliable meas-
incorrect alignment as indicated by the number of correctf Of model quality. MMA is easy to implement and all soft-

selected models when using the local energy term only. € tqols necessary fqr its application are easily ayailable.
significance of burial and contact energy for optimal model Ih€ importance of alignment accuracy can be easily seen

selection is lower than the importance of the local ener’@/the test models obtained in this study. Models built based

term. It is probably because the requirement for the con<}-erroneous alignments, although prepared using state-of-
vation of burial status is implicitly encoded in the mutatio€ art alignment methods that statistically perform well,
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contain errors as severe as completely incorrect matchindaoities may push the alignment into unphysical regions (e.g.,
disulfide bridges or completely misaligned elements of sd¢oe short loops), which results in a high strain of the protein
ondary structure. MMA allows one to worry less about thHgckbone in the model.

quality of the single alignment. This approach can be ex- Model building starting from a template of relatively low
tended to using different structural templates, if the choisequence homology to the target can be quite successful or
of one that is the most appropriate for modeling is not obviery disappointing. It should be stressed that MMA provides
ous, as presented on the example of S100A1 structure preeliable measure of model significance. As pointed out in
diction [44]. the Results section, the threading score per residue allows

The importance of sequence alignment is stressed in digcrimination between two modeling cases. In the first case,
manuals of comparative modeling programs, but is not widéhe sequence similarity corresponds to an important struc-
recognized as a significant problem despite numerous examnal similarity, and MMA produces a reasonable model that
ples where comparative modeling failed, even when usings@onsistently selected from those less reasonable. In the sec-
correct template [23]. The author of the MODELLER paclond case, the structural similarity resulting from sequence
age, which was used in our contribution, suggests an itesanilarity is too low for any model to be useful. No criterion
tive approach, i.e., the evaluation of a model produced usirging information from the sequences alone, such as the nu-
an initial alignment, the correction of the alignment and prmerical value of sequence identity or the statistical signifi-
ducing an improved model [45]. The approach presented hesace of sequence alignment, allows one to distinguish be-
can be viewed as a practical realization of these suggestitwsen these two cases. Thegent results allow one to ex-
Calculation of many alignments and models can be donepset that MMA may lead to an extension of applicability of
multaneously, which allows an automation of the processcttmparative modeling to cases of low sequence similarity
was shown that the use of different substitution matrices(ilse range of 15-30% sequence identity) in the future.
the easy way of generating alternative alignments. The approach described here attempts to explore the al-

One may wonder if it would be possible to solve the aligternative alignments and conformational space more widely
ment ambiguity problem by developing an alignment strahan standard modeling techniques. It was shown that the
egy that would work in every case. This seems unlikely fomzost accurate model could be much more easily identified
number of easons. The amino acid properties thatraost than the most accurate alignment. This is a result of addi-
important for conservation of structural features can depeiwhal geometrical constraints that are imposed on the align-
on the size and structural class of a given fold. The evofnent at the model building stage. MMA, which can be sum-
tionary distance is another important parameter that diffenarized as the process of construction and evaluation of sev-
significantly between test pairs, which probably makes teeal models based on a set of alternative alignments, leads to
construction of one optimal alignment matrix and calcula- significant improvement in the accuracy of comparative
tion of one set of gap penalties impossible. We have shomndeling.
that instead of searching for one optimal alignment protocol,
one may construct a set of alternative alignments correspond-
ing to various possible structural and evolutionary relatiog:-, .
ships between sequences and defer the selection of the CgFgrlals and methods
rect alignment to the stage of model evaluation.

Why is it possible to recognize the most accurate mo‘liﬁr!)tein airs tested
when the same is very difficult for the alignment? The con- P
struction of the model imposes additional restraints on ﬂP
alignment and significantly improves the sensitivity of so
energy tems. Atthe stage of alignment construction, sep
rate fragments of the target sequence are equivalenced to
ments of the template structure. The model building st
can be regarded as a test of the geometric feasibility of
connectivity between those fragments and of the consiste
of the interactions between them. It also provides a realistic
description of those parts of the target structure that do
have an equivalent part in a template structure. All this inf

ion i incl i -di ional ali lgo- . . .
mﬁ“n?srf is not included in one-dimensional alignment ag&our substitution matrices were selected from the best matri-
An analysis of the energy terms leads to the conclusior dl'? rggklnﬁ %Ub“sht‘.etd tby Arg;’? and C(i:p-vtvr?rkers [|24](.3'I(':r23e
that the local energy term (which describes local propen lele 469/ 0 SUIS I 'clmdmg rm;?g '?f. gpopu ar
ties of amino acids towards different types of secondary strfgckage [47] was also included and identilied as nwsgappep
the taltles. The mudtion matrices were downloaded from

ture) plays the most important role in the identification ) din/ 1311 Th d .
the best model. This stresses the importance of the cor f-//www.genome.ad.p [.3 ]'. hey were made positive as
ommended in [24], which is indicated by the plus sign.

alignment of secondary structure elements and of the glo o oo :
geometrical feasibility of the model. Random sequence siriaP Penalty parameters optimized for the substitution matri-

est pairs of sequence identity below 35% were selected from
Ne cases of unstable alignments described in the literature
iy | from a database of structurally similar proteins [46]. We
cted the pairs representing different structural classes and
types. Protein pairs forming the testing set are presented
198 able 3.

gglculation of the alignments
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ces were adapted from [24]. The alignments were calculatiEdiation between (positions (RMSD) and the local one as
using the GAP program from the GCG package [47], as sdgfined by the contact map overlap [36, 48] (see Table 1).
gested by Argos and coworkd@sl]. The diffeences in the ~ For comparison, the internal measure of restraint satisfac-
alignments were surprisingly large (see Fig. 2). Cases wheo@ provided by the modeling program (-In(pdf)) is shown.
two mutation matrices yielded the same alignment were rditds measure does not directly focus on model energy, but
and didn’t necessarily coincide with the alignment being catescribes the degree to which structural restraints imposed
rect. on the target by the template were satisfied.

To measure the significance of a given alignment on thelt should be stressed that the MMA method, if used as a
sequence level, the Z-scores were calculated as a differguregliction tool, does not require any knowledge about the
between the score obtained from the alignment algorithm farget three-dimensional structure. All the alignments and
a given pair of sequences and the average score obtainethafiels discussed in this study were prepared without any
ter randomization of the target sequence (50 randomizedlsewledge of target structures. Comparisons of the target
quences were used). structures with model and template structures were done only

As an additional test, the alignments were evaluated striaexplore the possibilities and applicability of the MMA.
turally based on our knowledge about target structure. Two
measures of alignment accuracy were calculated. The global
measure of alignment accuracy was calculated as the valbe local measure of structural similarity
C, RMSD after optimal superposition of the target and the
template, where equivalent pairs of &oms were defined Contact map overlap can be used as the local measure of
by the given sequence alignment. Contact map overlap $@uctural similarity [36, 48]. Here, it was used to evaluate
tween the target and the template, according to each aligie accuracy of the alignments and protein models. Two con-
ment, was used as the local measure of alignment qualityait maps are equivalenced according to the alignment and
is important to note that this strategy of alignment evaluationerlapping contacts are counted. This is described by the
is different from the one used by most authors, where flolowing formula:
alignment accuracy is calculated by comparing it position- 1
by-position with the “standard of truth” structural alignmeng ( AR = — CA . CB
[24, 26]. It was recently shown [35, 36] that structural align%( 3 N¢ Z Z AB(1)AB( ) ~AB()AR( )
ments may be ill-defined in themselves and, in most cases,
there are many possible alternative alignments of compar
ble quality. In a complete parallel to the situation in seque
alignments, the density of suboptimal alignments can be
culated for structural alignments [48] and the width of such_,.~ . ) . .
distribution becomes quite large for distant homologues s ﬁllzatlon factor Nis the maximal ppssmle value of over-
as the test pairs used in this work. Therefore, the struct Pa equal to the number of contacts in the smaller of the two

score of the sequence-based alignment is a much more mggqu'_ems. The same formula is used to calculate the value of
ingful measure of its quality. contact map overlap between the native structure and the pro-

tein model. In this case, there is a simple correspondence
between two contact maps that are of equal size. Thus no
renumbering of contacts is necessary and the overlapping
contacts are simply counted.

1>] ]

%_ereCﬁ andCEI denote residue-residue contacts in proteins
jand B, respectiveI)CAB(i)ABG) is the contact map of pro-
In B renumbered according to the alignment AB. The nor-

Model building and evaluation of the models

The models were built using the method of “satisfaction of
spatial restraints” implemented in the MODELLER program, - dina enerav function
[41]. A standard MODELLER routine ‘model’ was applied. g energy

The models were evaluated with the score of threadu#aF threading energy of a protein is a function of a subset of

calculated with the use of energy parameters developed i .
the topology fingerprint threading method [39] and, indepen%t-rUCturaI parameters of the f@im. This subset of param-

ently, by 3D profiles scorgt0]. We often use the term “en_etersl is a si'mpliﬁed description of prqtein strypture (topol-
erg;’n inysteadpof“score”, \%hi]ch does not mean that thos29Y fingerprint of the protein [39]). This simplified descrip-

numbers can be rigorously treated as real physical enenﬁ 0 makes statistical derivation of potentials of mean force

The units of “energy” roughly correspond to the value of o eea'sible. All the potentials of mean force used in this contri-

KT at room temperature [49]. To allow comparison of scor, gtlon were derlvejd from t.he database of high quality pro-

for proteins differing in length, we report the score per re In structures using the Inverse Boltzmann law [42, 49].

due. The same approach, i.e., using the threading energy E%?ad'ﬂg energy'1s a function of the following parameters

full atom protein model, was used to analyze interactionsdhProteIn structure: . .

a family of structurally divergent homologous proteins [50]. = The !90?" c:,onformatlon' of the protein backbone de-
Finally, the models were compared to the true structu ibed by “chiral” squared distances betwegra@ms of

of the target proteins. Again, two measures of structural Sim_sidues (i-1) and (i+2). This parameter is closely related to
larity are used: a global measure of the root mean square
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the secondary structure. The corresponding potential of m&anSali, A.; Matsumoto, R.; Neil, H.P.; Karplus, M.; and
force is related to the secondary structure propensity. StevensR.L. J.Biol.Chem1993 268 9023-9034.

2. The burial status of the side chains in the sequertce Schiffer, C.A.; Caldwell, J.W.; Kollman, P.A.; and Stroud,
(the side chain is classified as buried if at least 70% of its R.M. Proteins199Q 8, 30-43.
surface is screened from the solvent). The corresponding po-Hilbert, M.; Bohm, G.; and Jaenicke, Rroteins1993
tential of mean force describes the energy resulting from ex-17, 138-151.
posing a given side chain to the solvent or burying it in tBe Ring, C.S. and Cohen F.EEASEB Journall993 783-
protein interior. 790.

3. The contacts between side chains (the side chairgs iJohnson, M.S.; Srinivasan, N.; Sowdhamini, R.; and
and j are classified as interacting if the distance between anyBlundell, TL. Crit. Rev. Biochem. & Mol.BiolLl994 29,
pair of heavy atoms in the side chains is less than 5 A). The1-68.
contact information defines the contact map of the protefr. SYBYL 6.0, 1993, Tripos Inc., St. Louis, MO
The corresponding potential of mean force describes the ¥f- Topham,C.M.; Thomas, P.; Overington, J.P.; Johnson,
fective attraction or repulsion of the side chains. M.S.; Eisenmerger, F.;, and BlundellLTBiochem. Soc.

The threading energy estimate of the protein is the func- Symp.199Q 57, 1-9.
tion of parameters 1-3. It is described by the following fot2. INSIGHT 2.1, 1993, Molecular Simulations Inc., San

mula: Diego, CA
13. SWISS-MODELhttp://www.expasy.ch/swissmod/SWISS-
E:zs(A,Aﬂ,r%ﬂ+2*)+zri/*5(p,)+ MODEL.html.
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